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Abstract. We consider the gelation of particles which are permanently connected by random crosslinks,
drawn from an ensemble of finite-dimensional continuum percolation. To average over the randomness, we
apply the replica trick, and interpret the replicated and crosslink-averaged model as an effective molec-
ular fluid. A Mayer-cluster expansion for moments of the local static density fluctuations is set up. The
simplest non-trivial contribution to this series leads back to mean-field theory. The central quantity of
mean-field theory is the distribution of localization lengths, which we compute for all connectivities. The
highly crosslinked gel is characterized by a one-to-one correspondence of connectivity and localization
length. Taking into account higher contributions in the Mayer-cluster expansion, systematic corrections
to mean-field can be included. The sol-gel transition shifts to a higher number of crosslinks per particle,
as more compact structures are favored. The critical behavior of the model remains unchanged as long as
finite truncations of the cluster expansion are considered. To complete the picture, we also discuss vari-
ous geometrical properties of the crosslink network, e.g. connectivity correlations, and relate the studied
crosslink ensemble to a wider class of ensembles, including the Deam-Edwards distribution.

PACS. 61.43.-j Disordered solids – 64.70.Dv Solid-liquid transitions – 61.41.+e Polymers, elastomers,
and plastics 05.20.Jj Statistical mechanics of classical fluids

1 Introduction

In this paper we study chemical gelation, i.e. the equi-
librium transition from a liquid (sol) to an amorphous
solid (gel) which is induced by the introduction of per-
manent random crosslinks between the particles of the
liquid. The classical theory of gelation, as developed by
Flory and Stockmayer [1], assumes a tree like connectiv-
ity of the random macromolecular networks generated in
the process of gelation and vulcanization. The critical ex-
ponents are those of mean-field percolation. Stauffer [2]
and de Gennes [3] used instead the lattice connectivities
of finite dimensional percolation, embedding the gelation
transition in the context of critical phenomena. The re-
sulting critical exponents are those of three-dimensional
percolation theory, in contradiction with the classical val-
ues. Experimental support has accumulated for the non-
classical values [4] and, in addition, given evidence for
the size of the critical region, outside of which mean-field
exponents prevail [5]. One concludes that the geometric
connectivity of gels is well described by percolation the-
ory. On the other hand, the thermal properties of gels are
beyond the scope of percolation theory and have in re-
cent years been addressed with statistical mechanics, con-

a e-mail: weigt@theorie.physik.uni-goettingen.de
† deceased

sidering both geometric and thermal fluctuations [6–10].
A mean-field picture has been developed [11–13] and a
renormalization group analysis [14,15] has been carried
out for the fluid side of the transition. Thereby the ap-
proach of statistical mechanics has been connected to per-
colation theory. However, the structural and elastic prop-
erties of finite-dimensional gels are still only known within
mean-field theory.

In this paper we focus on the gel phase for an en-
semble of crosslinks, which is given by continuum per-
colation. This is not the Deam-Edwards distribution [6],
which has been used frequently in the statistical approach.
After a short introduction of the model in Section 2, we
discuss geometrical properties of the network, generated
by three-dimensional percolation, e.g. we investigate cor-
relations in connectivity of neighboring sites and com-
pute the number of small loops (Sect. 3). Subsequently
we set up a Mayer-cluster expansion for the crosslinked
melt (Sect. 4). Our effort is not directed towards the crit-
ical behavior of the gelation transition, which was studied
in references [14,15]; rather we want to find out, whether
the characteristics of the gel phase as described by mean-
field theory, survive in a finite-dimensional model. We re-
call that already on the level of a mean-field theory one
needs a distribution of length scales to characterize the
local static density fluctuations of the gel phase. Our aim
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is to find out in how far this picture has to be modified in
a short-range model.

The lowest diagram of the Mayer cluster expansion
leads back to mean-field theory (Sect. 5), which is ex-
pected to be appropriate deep in the gel phase away from
the transition point. We compute the distribution of local-
ization lengths for all connectivities. For the strongly con-
nected gel we find a multi-peak structure of the distribu-
tion, such that each coordination number corresponds, to
leading order, to a well-defined localization length. Subse-
quently the first correction to mean-field theory within the
Mayer-cluster expansion is calculated. The critical con-
nectivity is increased due to the existence of small loops,
which do not increase the cluster size. The gel fraction
and the distribution of localization lengths change only
quantitatively, as compared to mean-field theory and the
critical exponents remain the same as long as we only
consider bare perturbation theory and do not resum the
Mayer-cluster expansion. Finally in Section 6, we discuss a
general class of crosslink distributions, which includes the
Deam-Edwards distribution as well as the distribution of
d-dimensional percolation.

2 The model: crosslinked point particles

We consider a system of N identical classical particles,
confined to a d-dimensional volume V with the average
density of particles ρ0 = N/V being constant in the
thermodynamic limit N,V → ∞. The particle positions
are denoted by R = {Ri}, with i running from 1 to N .
The interactions are given by the Hamiltonian

H(R) = U(R) +
M∑
e=1

V (Rie − Rje) . (1)

Here, U(R) describes the particle interactions in the fluid,
without crosslinks, and is given by a sum over single-
particle and pair potentials. Permanent random crosslinks
are introduced between M pairs of particles, numbered by
{(ie, je)}Me=1. Two monomers, participating in a crosslink,
are forced to remain close to each other. We model this
constraint by an attractive pair potential V (Rie − Rje).
The simplest choice is a harmonic one, V (Rie − Rje) =
κ
2 (Rie − Rje)2, where κ is the strength of the crosslink
coupling. It has been shown that the harmonic potential
is equivalent to crosslinks represented by hard constraints
in the limit κ → ∞ [16]. Note that further geometrical
constraints arise indirectly via the interlocking of closed
loops of crosslinks, see the discussion in [13]. These effects
are not taken into account in the above Hamiltonian.

It is convenient to introduce the symmetric N × N
connectivity matrix J with entries

Jij =
M∑
e=1

(δi,ieδj,je + δi,jeδj,ie) . (2)

These entries equal one, whenever i and j are linked
together, and zero otherwise. Multiple crosslinks are ex-

cluded. Harmonic interactions due to the crosslinks can
thus be represented by

M∑
e=1

V (Rie − Rje) =
κ

2

∑
1≤i<j≤N

Jij(Ri − Rj)2 . (3)

The thermal degrees of freedom are the positions of the
monomers. The set of crosslinks C : = {(ie, je)e=1} rep-
resents the quenched disorder of the model, so that the
monomers equilibrate in the presence of a fixed, non-
equilibrium configuration of crosslinks.

All thermodynamic properties can be obtained from
the partition function

Z(C) =
∫
V N

ddNR exp {−βH} (4)

which still depends on the quenched disorder C. Here
β = 1/(kBT ) denotes the inverse temperature. One usu-
ally assumes that the Gibbs free energy, βF = − logZ, is
self-averaging in the thermodynamic limit, and thus com-
putes its average over all crosslink realizations, F .

3 Distribution of Crosslinks:
Finite-dimensional percolation

In this section, we give an explicit formula for the distri-
bution of crosslinks corresponding to d-dimensional per-
colation. It is based on the intuitive picture that a given
number of crosslinks M is introduced simultaneously and
instantaneously into the fluid of monomers. The crosslinks
are strictly bivalent and connect pairs of monomers by a
chemical bond. Given the instantaneous (or more realisti-
cally fast) reaction, pairs of monomers which are nearby
in the instant of crosslinking, have a high probability to
be connected, whereas pairs of monomers which are dis-
tant, have a very small probability to be crosslinked. The
assumption of a fast crosslinking reaction as compared to
the diffusive time-scale of the fluid molecules is realistic
and becomes better and better the closer one gets to the
gelation transition, because larger and larger clusters are
built up and give rise to increasingly longer relaxation
times of the molecules in the fluid.

The distribution is generated in two steps:
(1) A liquid configuration R0 = {R0

i }Ni=1 (an instant)
of a d-dimensional fluid is generated, by randomly choos-
ing N points in d-dimensional space. One possibility is to
generate liquid configurations with the Boltzmann weight
of the uncrosslinked system, thereby including short-range
correlations of the fluid. Such a procedure will be discussed
in Section 6. Here we consider the simpler case of random,
uncorrelated positions R0 = {R0

i }Ni=1 in order to model
crosslinks corresponding to d-dimensional percolation.

(2) Given the configurationR0, each crosslink is chosen
independently, as described by a factorized distribution

P (C|R0) =
M∏
e=1

p(ie, je|R0). (5)
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The probability for a particular crosslink (ie, je) depends
only on the relative distance |R0

ieje |

p(ie, je|R0) =
∆(|R0

ieje
|)∑N

i, j=1∆(|R0
ij |)

(6)

with R0
ij = R0

i−R0
j . The function ∆(x) should be of finite

range, examples are ∆(x) = θ(λ − x) or ∆(x) = e−x/λ.
The denominator in equation (6) ensures the proper nor-
malization. The average of an observable f(R0, C) over all
crosslink configurations C is given by

f(R0, C) =
∫
V N

ddNR0

V N

×
N∑

i1, j1=1

· · ·
N∑

iM, jM=1

P (C|R0) f(R0, C) . (7)

Note that the integration over R0 is part of the averaging
over all crosslink distributions and should not be confused
with thermal averages.

Sometimes, it is technically simpler to allow the total
number of crosslinks to fluctuate. To this end, we replace
the second step in the above procedure by the following:

2′) Given the configuration R0, choose each crosslink
independently, as described by a factorized distribution

P ({Jij}i<j |R0) =

∏
1≤i<j≤N

(
δ(Jij − 1)p(R0

ij) + δ(Jij)(1 − p(R0
ij))

)
(8)

which explicitely excludes multiple crosslinks. The func-
tion p(x) should take values 0 ≤ p(x) ≤ 1 and be of finite
range. It will be convenient to assume a Gaussian shape

p(R0
ij) = exp

{
−a

2
(R0

ij)
2
}
· (9)

The “crosslinking-length” � = a−1/2 is chosen comparable
to the mean distance between particles, ρ−1/d

0 , in order
to guarantee an extensive number of crosslinks (see the
following section). The average (7) of an observable over
all crosslink configurations, now equivalently denoted by
C : = {Jij}i<j , is then replaced by

f(R0, C) =
∫
V N

ddNR0

V N

∫ ∏
i<j

dJij P (C|R0) f(R0, C) .

(10)

Before discussing the physics of the crosslinked sys-
tem, we will investigate some geometrical properties of
the network of crosslinks. Special emphasis is given to
local structures which are characteristic for the low-
dimensional structure of the network. They differ substan-
tially from the properties of diluted random graphs [17]
which give the proper mean-field description of the disor-
der distribution.

3.1 Number of crosslinks

To start with, we compute the distribution of the to-
tal number of crosslinks. As each pair of monomers is
considered independently in the crosslinking process, the
crosslink number is expected to fluctuate according to a
Poissonian distribution. For the probabilityW (M) of hav-
ing M crosslinks we indeed find

W (M) = δM,
�

i<j Jij

=
∫ π

−π

dx
2π

eix(M−�i<j Jij)

=
∫ π

−π

dx
2π

eixM

(
1 − W−

V
+
W−
V

e−ix

)(N
2 )

=
(N(N−1)

2

M

)(
1 − W−

V

)N(N−1)
2 −M (

W−
V

)M
,

(11)

where W−: =
∫
V

ddR p(R) = (2π/a)d/2 denotes the ef-
fective crosslinking volume for the distribution of equa-
tion (9). In the limit of large N , with constant particle
density ρ0 = N/V , these probabilities tend to a Poissonian

W (M) → M
M

M !
e−M (12)

with meanM = ρ0W−N/2. Fluctuations around the mean

are of order O(
√
M2 −M

2
) = O(

√
M), and hence small

compared to M . We therefore expect the differences be-
tween the ensembles with fixed and fluctuating number of
crosslinks to disappear in the thermodynamic limit.

3.2 Distribution of coordination numbers

The simplest local property of the crosslink network is
given by the distribution of coordination numbers. The
average fraction of particles being connected to exactly k
other particles is given by

w(k) =
1
N

∑
i

δk,
�

j Jij

= δk,
�

j Jij

=
∫ π

−π

dx
2π

eix(k−�j Jij)

=
∫ π

−π

dx
2π

eikx

(
1 − W−

V
+
W−
V

e−ix

)N−1

=
(
N

k

)(
1 − W−

V

)N−k (
W−
V

)k

→ e−c
ck

k!
· (13)

where the last expression describes the limiting distribu-
tion for N → ∞. It is thus found to equal a Poissonian of
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mean c : = ρ0W−. The same coordinations are found in the
long-ranged case p(R0

ij) = c/N . Differences to the long-
ranged case show up in nonlocal features, as connectivity
correlations and occurrence of loops.

3.3 Connectivity correlations

To study connectivity correlations, we consider the coor-
dination numbers of particles which are directly connected
by a single crosslink. Given a large network, we determine
the (asymptotic) probability that a randomly and uni-
formly selected crosslink has endpoints of coordinations
k1 and k2 respectively. This quantity is given by the sum
over all links, which have one endpoint connected to k1

and the other endpoint connected to k2 particles, normal-
ized by the total number of crosslinks

w(k1, k2) =
2

ρ0W−N

∑
i<j

Jij δk1,
�

l Jil
δk2,
�

l Jjl

=
2

ρ0W−N

∑
i<j

Jij δk1−1,
�

l �=i,j Jil
δk2−1,

�
l �=i,j Jjl

=
N − 1
ρ0W−

∫ π

−π

dx1 dx2

4π2
eix1(k1−1)+ix2(k2−1)

×J12e−i
�

l≥3(J1lx1+J2lx2) . (14)

The disorder distribution of equation (9) allows to com-
pute the average up to summations

w(k1, k2)=
min(k1,k2)−1∑

n=0

∞∑
l=0

k1+k2−2−2n∑
m=0

(
k1 + k2 − 2 − 2n

m

)

× (−1)m ck1+k2−2−n+l e−2c

n! (k1 − 1 − n)! (k2 − 1 − n)! l!

× 1
2d(n+l+m−1)/2 (2 + n+ l +m)d/2

, (15)

where c = ρ0W− denotes again the average connectivity.
The above expression has been evaluated numerically

and is represented in Figure 1 for d = 3 and c = 6. There
exist obviously connectivity correlations in the sense that
particles of low coordination are surrounded more likely
by other low-connected particles. Similarly, particles of
high coordination are likely to be surrounded by other
high-coordinated particles. This effect can be understood
intuitively: Low coordination of a particle i corresponds
to a small number of other particles inside the effective
crosslinking volume W− centered in R0

i . Due to the over-
lap of this volume with the crosslinking volume of the
neighboring particles, these will typically have a small
number of potential crosslinking partners, too. The curves
in Figure 1 cross 1 in the vicinity of k2 � c+ 1, which is
the average connectivity of particles found by considering
endpoints of randomly chosen crosslinks.

Connectivity correlations decrease exponentially with
spatial dimension d and vanish in the limit d→ ∞. In this
limit, the crosslink network becomes a random graph in
the sense of [18].
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Fig. 1. Connectivity correlations for d = 3 and average con-
nectivity c = ρ0W− = 6. The figure shows the probabil-
ity that a randomly selected crosslink has endpoints of con-
nectivities k resp. l, as a function of l for various values of
k = 1, 3, 5, 7, 9, 11, 13, 15 (from top to bottom on left axis,
lines are guides to the eyes), and normalized by the uncor-
related probability w(k − 1)w(l − 1). Values larger than one
correspond to positive correlations, values smaller than one to
anti-correlations.

3.4 Small loops

Another signature of the finite-dimensional structure of
the crosslink network is the existence of an extensive num-
ber of short loops and other local, non-treelike sub-graphs.
For example, the mean number of triangles is easily com-
puted,

N∆ =
∑
i<j<k

JijJjkJki

=
(
N

3

)
J12J23J13

=
(
N

3

)∫
ddR0

1 ddR0
2 ddR0

3

V 3
p(R0

1 − R0
2)

×p(R0
2 − R0

3) p(R
0
1 − R0

3)

=
N

6
ρ2
0

∫
ddR0

1 ddR0
2 p(R

0
1) p(R

0
2) p(R

0
1 − R0

2)

=
N

6
ρ2
0W∆ . (16)

and seen to be extensive for generic short ranged distri-
butions p(R). For the particular choice of equation (9) we
find ρ2

0W∆ = ρ2
0(2π/

√
3a)d = c23−d/2. For constant aver-

age connectivity, the number of triangles tends to zero as
d→ ∞. In this limit we recover the properties of random
graphs, which are known to be locally tree-like.

The presented derivation can be easily generalized to
more complicated local structures, always giving rise to
extensive numbers decreasing exponentially with growing
spatial dimension.
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4 Mayer-cluster expansion of the replicated
local density function

After having discussed some geometrical properties of
the random networks generated according to finite-
dimensional percolation, we go back to the original phys-
ical model of a crosslinked fluid, as given by equation (1).
We discuss the order parameter of the gel phase and show
how to compute local static density fluctuations within a
Mayer-cluster expansion.

4.1 Localization of particles and the physical order
parameter

As discussed previously [8,11,13], the sol-gel transition is
an equilibrium phase transition from a liquid state (sol) to
an amorphous solid state (gel). In the gel a finite fraction
of particles is localized in the vicinity of fixed equilibrium
positions. Increasing the number of crosslinks, localiza-
tion first occurs, when a macroscopic cluster of crosslinked
molecules appears, i.e. at the percolation threshold. Hence
the fraction of localized particles is determined by the
mass of the macroscopic cluster.

Due to the random crosslinks, the equilibrium posi-
tions of the localized particles do not exhibit any periodic
structure, but are random. The gel is an amorphous solid,
but still all macroscopic properties have to be translation-
ally invariant. In particular, the single-particle density

ρ(1)(r) =
N∑
i=1

〈δ(r − Ri)〉 = ρ0 (17)

is homogeneous in both phases. Here and in the following,
the thermal average with respect to the equilibrium state
of the crosslinked system, (equation (4)), is denoted by 〈·〉.

To detect localization, one has to consider higher mo-
ments of the local density. The simplest one is

ρ(2)(r 1, r 2) =
N∑
i=1

〈δ(r 1 − Ri)〉 〈δ(r 2 − Ri)〉 . (18)

Macroscopic homogeneity implies that ρ(2) = ρ(2)(r 1 −
r 2). In the sol phase, all particles are free to explore the
whole container and hence any particular one is equally
likely to be in any sub-volume. This implies 〈δ(r 1−Ri)〉 =
1/V and hence ρ(2) = ρ(2)(r 1 − r 2) = ρ0/V . In the
gel phase, however, a finite fraction of all particles is
part of the macroscopic cluster and thus localized. In the
simplest model [12], one assumes Gaussian localization
〈δ(r 1 − Ri)〉 ∝ exp{−(r 1 − ai)2/(2ξ2i )} around homoge-
neously distributed random localization centers ai. Here
ξi is the localization length, characterizing the extent of
thermal fluctuations around the preferred position ai. The

second moment is then given by

ρ(2)(r 1 − r 2) =
N∑
i=1

∫
ddai

(2πξ2i )dV
exp

{
− (r 1 − ai)2

2ξ2i
− (r 2 − ai)2

2ξ2i

}

= ρ0

∫ ∞

0

dξ2P̃ (ξ2)
(

1
4πξ2

) d
2

exp
{
− (r 1 − r 2)2

4ξ2

}
. (19)

The second moment is thus expressed in terms of the dis-
tribution of localization lengths

P̃ (ξ2) :=
1
N

N∑
i=1

δ(ξ2 − ξ2i ) (20)

which is expected to be rather broad due to the inhomo-
geneous environment of different particles: Some particles
are expected to be strongly localized due to high local con-
nectivity (steep local potentials), whereas particles e.g. on
dangling bonds are expected to exhibit larger spatial fluc-
tuations, corresponding to larger localization lengths.

The gelation transition occurs, when the connectivity
per particle is O(1). Hence, there is no reason to assume
Gaussian static density fluctuations, and the second mo-
ment (18) is not sufficient to completely characterize the
structure of the gel phase. Instead, the full distribution
of local static density fluctuations is required, or, equiva-
lently, all moments

ρ(l)(r 1, ...r l) =
N∑
i=1

l∏
j=1

〈δ(r j − Ri)〉 . (21)

Within mean-field theory, it has been shown that all
higher moments can be expressed in terms of P (ξ2), ac-
cording to

ρ(l)(r 1, ...r l) = ρ0

∫
dda

∫ ∞

0

dξ2P̃ (ξ2)

×
(

1
2πξ2

) dl
2

exp


− 1

2ξ2

l∑
j=1

(r j − a)2



(22)

so that the structure is characterized by a single func-
tion, the distribution of localization lengths. Whether or
not this result holds beyond mean-field theory is an open
question.

4.2 From the replicated partition function
to an effective molecular fluid

Our aim is the computation of the partition function of
equation (4). The most important pair potential U is
the excluded volume interaction. It is known that the
crosslinked melt without excluded volume will collapse.
Hence we cannot simply set U(R) = 0. Here we introduce
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instead a Lagrange parameter to ensure the constraint of
homogeneous density. To this end we choose

−βU(R) =
∫
V N

ddNx µ(x)
∑
i

δ(x − Ri) =
∑
i

µ(Ri)

(23)

and consider µ(R) as a Lagrangian multiplier coupled to
the single-particle density. It will be determined such that
the single particle density remains homogeneous. Techni-
cally it is much simpler to work with single-particle po-
tentials instead of the excluded volume interaction.

We expect the model to be self-averaging in the macro-
scopic limit, i.e. intensive observables should not depend
on the particular disorder realization, but only on the sta-
tistical ensemble of crosslinks. Hence we set out to com-
pute the disorder averaged free energy F: = −lnZ(C) with

Z(C) =∫
V N

ddNR exp



∑
i

µ(Ri) −
∑
i<j

JijV (Ri − Rj)


 .

(24)

We use units of energy such that β = 1.
To perform the average over the crosslink distribution

we use the replica trick [19]

lnZ(C) = lim
n→0

Z(C)n − 1
n

, (25)

first assuming positive integer n, and using a replica-
symmetric ansatz to analytically continue the results to
n → 0 at the end. For integer n, the model is replaced
by n copies Ra, a = 1, ..., n, with independent coordinates
but identical disorder. We can explicitly calculate the av-
erage over the Jij , for given R0, and find

Z(C)n =
∫
V nN

n∏
a=1

ddNRa

× exp



∑
i

n∑
a=1

µ(Ra
i )−

∑
i<j

Jij

n∑
a=1

V (Ra
i −Ra

j )




=
1
V N

∫
V (n+1)N

n∏
a=0

ddNRa exp

{∑
i

n∑
a=1

µ(Ra
i )

+
∑
i<j

ln
[
1 + p(R0

i − R0
j)
(
e−
�n

a=1 V (Ra
i −Ra

j ) − 1
)]}

.

(26)

Note that the integration in the last line runs also over all
disorder configurations R0

i . It thus resembles an (n+ 1)-
times replicated system, where the replica of index 0 cor-
responds to the liquid configuration being part of the
quenched disorder, and the replicas a = 1, ..., n are the
thermal degrees of freedom of the crosslinked model.

The main idea is now to interpret this expression as
the partition function of a fluid of N “effective molecules”,
each consisting of n + 1 particles [20]. We simplify the
notation by introducing a d(n + 1)-dimensional vector
R̂i = (R0

i , ...,R
n
i ) for the position vectors of the “con-

stituents” of molecule i. The molecules interact pairwise
via the potential

Vn(R̂i − R̂j) =

− ln
[
1 + p(R0

i − R0
j)
(
e−
�n

a=1 V (Ra
i −Ra

j ) − 1
)]

, (27)

which is symmetric with respect to permutations of the
last n particles, thus reflecting the replica symmetry of
the replicated partition function. Note that there are no
explicit intra-molecular interactions. However, the inter-
molecular interactions are many-particle interactions, thus
leading to an effective coupling of different particles within
one molecule. In the context of gelation, the central ques-
tion is whether or not molecules are bound in the sense,
that |Ra

i − Rb
i |, a 	= b, stays finite for a finite fraction

of all molecules i in the thermodynamic limit. As we will
see in the following, unbound molecules may be identified
with the sol fraction, bound molecules with the gel fraction
which appears only at or above the gelation transition.

4.3 Mayer-cluster expansion for the effective molecular
fluid

Having in mind the interpretation of the replicated and
(partially) disorder-averaged system as an effective fluid,
we can use the classical concepts of equilibrium statistical
mechanics of fluids [21], in particular the Mayer-cluster
expansion in the diagrammatic formulation of [22]. We
thus introduce the Mayer-bond

b(R̂i, R̂j) = e−Vn(R̂i−R̂j) − 1

= p(R0
i − R0

j)
[
e−
�n

a=1 V (Ra
i −Ra

j ) − 1
]
, (28)

which factorizes into a n-fold replicated Mayer-bond of a
fully connected system times the probability of existence
of the crosslink Jij = 1.

The quantity of central interest for gelation are the
moments of the local density (21), all of which can be
related to the single-molecule density

ρ(r̂) =
N∑
i=1

〈
δ(r̂ − R̂i)

〉
n
· (29)

The brackets 〈·〉n denote the thermodynamic average of
the effective molecular fluid, (Eq. (26)). The moments
of the local density ρ(l)(r 1, ... r l) are obtained from the
molecule density according to

ρ(l)(r 1, ..., r l) = lim
n→0

∫
V

ddr0
n∏

a=l+1

∫
V

ddra ρ(r̂) . (30)
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Fig. 2. Simplest diagrams in the Mayer-cluster expansion of
the local replicated density. These diagrams are not reducible
to two disconnected components by deleting a single vertex.

For a macroscopically translationally invariant system, as
the gel, all single-particle densities have to be homoge-
neous, implying for the molecule density

lim
n→0

∫
V n

ddr0 · · ·ddra−1 ddra+1 · · ·ddrn ρ(r̂) = ρ0 (31)

for all a = 0, ..., n, (Eq. (17)).
The following can be understood best by using a graph-

ical representation. We consider diagrams whose vertices
are either white circles, representing a molecule at posi-
tion r̂, or black circles, representing an integration over
the single-molecule density. The lines connecting two cir-
cles denote a Mayer-bond b(r̂1, r̂2). Each diagram has to
be divided by its symmetry number which counts the num-
ber of possible permutations of vertices which do not al-
ter the diagram. Simple examples are given in Figure 2,
e.g. the first diagram reads

∫
dd(n+1)r̂1b(r̂, r̂1)ρ(r̂1). The

symmetry number equals 1 as black and white circles are
distinguishable. Two circles are never connected by more
than one Mayer-bond. A diagram will be called one-vertex
irreducible, if it does not reduce to two disconnected di-
agrams by deleting any single vertex and its adjacent
Mayer-bonds. All diagrams in Figure 2 are one-vertex ir-
reducible.

Using the results of [22], ρ(r̂) has to fulfill the non-
linear integral equation

ln ρ(r̂) = µ(r̂) +
∑

one-vertex irreducible diagrams

with one white circle of coordinate r̂, and
an arbitrary number of black circles. (32)

As already mentioned above, the single-particle potentials
µ(r̂) =

∑
a µ(r a) act as Lagrangian multipliers guaranty-

ing the homogeneity condition (31). The first diagrams
with up to four vertices are shown in Figure 2.

4.4 Structure of the density: Distribution
of localization lengths

In order to extract the moments of the local density ac-
cording to equation (30), we have to perform the replica
limit n → 0. We therefore introduce some ansatz on the
analytical structure of ρ(r̂). The first assumption concerns
the validity of replica symmetry at the order-parameter
level: We assume that ρ(r̂) is invariant under any permuta-
tion of the n replicas a = 1, ..., n of the crosslinked system.
Only the disorder system a = 0 is distinct. The second
assumption is inspired by the simple model of Gaussian

localization of particles belonging to the gel. Following
equation (22) we represent ρ(r̂) by

ρ(r̂) = (1 − q)
ρ0

V n
+ qρ0

∫
ddR

∫ ∞

0

dτ0 dτ P (τ0, τ)

×
( τ0

2π

) d
2
( τ

2π

) dn
2

exp

{
−τ0

2
(r0−R)2− τ

2

n∑
a=1

(r a−R)2
}
.

(33)

The interpretation of this ansatz is quite simple: A frac-
tion 1 − q of effective molecules, with 0 ≤ q ≤ 1, is not
bound, the n + 1 particles of each molecule are homo-
geneously distributed in V . The remaining qN molecules
are restricted by the distribution of inverse squared local-
ization lengths P (τ0, τ). Given a particular r 0 from the
disorder distribution, we find a randomly drawn R at an
average squared distance 1/τ0, which itself is the local-
ization center of the other n particles. Non-zero τ and τ0
thus correspond to bound molecules, or, more physically,
to a situation where the particles are localized close to
the original disorder configuration which was drawn be-
fore crosslinking. Thus, q denotes the gel fraction of the
crosslinked material, i.e. the fraction of particles which
are part of its solid component. The localization length ξ2
of the phenomenological model (Sect. 4.1) is simply re-
lated to τ = 1/ξ2. Our ansatz generalizes the ansatz in-
troduced in [12] for the Deam-Edwards distribution, with
reduced permutation symmetry. Please note that it al-
ready implies a homogeneous single-particle density. Only
the global normalization has to be enforced, thus we can
fix µ(r̂) = µ to be a constant chemical potential.

Ansatz (33) in fact solves the Mayer-cluster expan-
sion (32) for an appropriate choice of P (τ0, τ). This can
be seen best by investigating the structure of the diagrams
on the left-hand side of equation (32). Due to the Gaus-
sian shape of the Mayer bonds (28) all integrations corre-
sponding to black circles can be carried out, see Section 5
for specific examples. The resulting expression is again a
(continuous) sum over Gaussian terms in the distances
(r a − R). Also the symmetry of ansatz (33) is preserved,
because the Mayer-bonds are symmetric with respect to
permutations of the thermal replicas a = 1, ..., n, too. The
Mayer-cluster expansion thus leads, via comparing the co-
efficients of the Gaussian contributions of identical vari-
ance on both sides of equation (32), to a non-linear integral
equation for P (τ0, τ).

To calculate the physical order parameter, we have to
plug the replica-symmetric ansatz (33) into equation (30).
This can be done for arbitrary moments of the local den-
sity. For the sake of clarity, we restrict the presentation to
the second moment (l = 2), and find by direct integration
over r 0, r 3, ..., r n and R

ρ(2)(r 1, r 2) = (1 − q)
ρ0

V

+ qρ0

∫ ∞

0

dτ P (τ)
( τ

4π

) d
2

exp
{
−τ

4
(r 1 − r 2)2

}
. (34)
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The second moment depends on P (τ0, τ) only through the
reduced distribution

P (τ) :=
∫ ∞

0

dτ0 P (τ0, τ) (35)

of localization lengths of the thermal system. The same is
true for all higher moments, implying that the information
on τ0 is not needed in the description of a gel. We therefore
concentrate our attention on the properties of the reduced
distribution P (τ) alone.

5 Truncations of the Mayer-cluster expansion

Based on the Mayer-cluster expansion, one could try to
partially resum the series, developing e.g. a hypernetted-
chain or Percus-Yevick approximation [21]. Due to un-
solved problems in calculating the replica limit of general
diagrams, this seems, however, not to be tractable. Fur-
thermore the above summations are notoriously bad, as
far as critical exponents are concerned. We therefore re-
strict our investigations to the simplest truncations of the
series. As we will see in the following section, already the
first diagram, consisting of one white, one black vertex and
a single Mayer-bond, reproduces the results of mean-field
theory.

In Section 5.2 we include the first correction: a trian-
gular diagram with one white and two black circles, be-
ing completely connected by three Mayer-bonds. This dia-
gram is shown as the second one in Figure 2. We will show,
that the inclusion shifts the sol-gel transition to higher
connectivities. The critical properties remain unchanged;
we find the same critical exponents for the growth of the
gel fraction and for the scaling function of the inverse
squared localization lengths.

All diagrams containing more than one Mayer-bond
decrease exponentially with the space-dimension d, mak-
ing truncations more reliable in high dimensions. How-
ever, the Mayer-cluster expansion cannot be considered
as a systematic expansion around the infinite-dimensional
mean-field.

5.1 Back to mean-field theory

We start with the simplest non-trivial truncation of the
Mayer-cluster expansion: only the leftmost diagram of Fig-
ure 2 will be included. Its contribution is denoted by Γ−
and is explicitly given by

Γ− =
∫
V n+1

dd(n+1)r̂1ρ(r̂1)p(r1
0 − r 0)

×
[
e−
�n

a=1 V (r1
a−r a) − 1

]
. (36)

If the above expression is plugged into the truncated
Mayer-cluster expansion, one obtains a non-linear integral

equation for P (τ) (details are given in Appendix A)

1 − q + q

∫ ∞

0

dτ P (τ)e−iτx = exp

{
− cq

+ cq

∫ ∞

0

dτ P (τ) exp
(
−i

κτ

2(κ+ τ)
x

)}
. (37)

The above equation becomes exact, if we choose p(R0
i −

R0
j) = c/N to be distance-independent, instead of con-

necting only particles, which are close in d-dimensional
space. In fact, one can easily see that in the long-ranged
case all higher diagrams in the Mayer-cluster expansion
tend to zero in the thermodynamic limit, leaving only the
first diagram.

By sending x→ −i∞, we find a simple relation for the
gel fraction,

1 − q = exp{−cq} (38)

first derived in the context of gelation in [23]. It coincides
with the size of the giant component in random graph per-
colation [18]. Equation (38) always has the solution q = 0,
corresponding to the fluid state with a vanishing fraction
of localized particles. At the critical value of the average
connectivity, ccrit = 1, a second solution appears continu-
ously, accounting for the finite fraction of particles in the
macroscopic cluster. If we slightly increase the number of
crosslinks beyond the percolation threshold, c = 1 + ε
(0 < ε 
 1), we find q = 2ε+ O(ε2), i.e. the gel fraction
grows linearly with the distance from the transition.

The equation for P (τ) can be simplified if we substi-
tute equation (38) into equation (37), expand the right-
hand side, and invert the Fourier transform:

P (τ) = e−cq
∞∑
l=1

clql−1

l!

∫ ∞

0

dτ1 · · · dτl P (τ1) · · ·P (τl)

× δ

(
τ −

l∑
i=1

κτi
κ+ τi

)
. (39)

In the critical region q is small so that the expansion on
the right hand side can be truncated. The typical inverse
squared localization length grows linearly with ε. This can
be seen by rescaling it as τ = εκθ. We introduce the scal-
ing function π(θ) = εκP (εκθ) and expand (39) to second
order in ε (see Appendix B)

(1 − 2θ)π(θ) = θ2π(θ) +
∫ θ

0

dθ1 π(θ1)π(θ − θ1) . (40)

The above equations (38) and (40) were derived pre-
viously as the saddle-point approximation for polymers
crosslinked according to the Deam-Edwards distribu-
tion [12]. In that work, a melt of linear macromolecules
was studied in contrast to the present work, which starts
from a fluid of point particles. Since the gelation transition
is a continuous phase transition with a diverging correla-
tion length, the critical behavior of the two systems is the
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Fig. 3. Rescaled distribution π(θ) = (c − 1)κ P ((c − 1)κθ) of
inverse squared localization lengths, for average connectivities
c = 1.1, 2.0, 5.0, and the simplest truncation of the Mayer-
cluster expansion. The results are obtained numerically by the
population dynamics for M = 106 and 104M iteration steps.
We have tested that the iteration has reached a stationary
point. The curves show the crossover from the smooth scaling
function for small connectivities to the peaked structure for
large connectivities.

same. This kind of universality with respect to the build-
ing blocks has been noticed previously [24] and in fact also
holds for different crosslinking procedures.

The numerical solution of equation (40) in the criti-
cal region was given in reference [12], here we go on to
a numerical solution of the full equation (39) for arbi-
trary connectivities. This numerical solution is based on
a replica-symmetric variant of the population dynamics
introduced in [25]. It starts with a large initial population
T = {τ1, ..., τM} drawn randomly from some initial dis-
tribution P0(τ), and the gel fraction q is determined from
equation (38). The population is iterated in the follow-
ing way:
(i) Draw a random positive integer l with probability
e−cqclql−1/l!
(ii) Choose l + 1 random integers i0, i1, ..., il uniformly
from {1, ...,M}.
(iii) Replace τi0 by

∑l
k=1 κτik/(κ+ τik ).

(iv) Go back to (i) with the updated population.
After a sufficiently large number of iterations, the his-
togram of T will be a good approximation of P (τ). For
getting a better statistics, a time average over many itera-
tions steps can be taken (starting after some waiting time
needed for approaching a stable fix point).

We have implemented this algorithm, and calculated
P (τ) for several values c = ρ0W− of the average connectiv-
ity. The results are shown in Figure 3. For connectivities
close to the percolation threshold, P (τ) in fact follows the
scaling function described by (40), and then starts to de-
viate and to develop a peak structure. Still, the typical
values for the inverse squared localization lengths scale
approximately like c− 1. The peak structure observed for
connectivities far beyond the gelation point becomes more

and more pronounced, and allows for an analytical solu-
tion of the leading terms in P (τ) in the limit of high, but
finite connectivity.

We realize that q approaches 1 exponentially for in-
creasing c and the typical values of τ grow proportionally
to c. Consequently we have

l∑
i=1

κτi
κ+ τi

= lκ+ O
(
lκ

c

)
. (41)

Neglecting all subdominant terms, we find

P (τ) �
∞∑
l=0

e−c
cl

l!
δ(τ − lκ) . (42)

Including also subdominant terms, the peaks are shifted
by O(κ), whereas the width becomes O(c−1/2κ), lead-
ing to the structure observed in the numerical solution
for P (τ).

This leads to a very simple and attractive picture for
strongly crosslinked systems: The localization length of
a particle depends to leading order only on the number
of crosslinks attached to the particle, or more precisely,
its inverse square localization length equals the coordi-
nation times the crosslink strength. The distribution of
localization lengths can then be written as a superposi-
tion of contributions of all coordinations l, each one occur-
ring according to the Poisson distribution of equation (13),
w(l) = cle−c/l!

An interesting consequence of the above interpretation
arises in the context of the connectivity correlations dis-
cussed in Section 3.3: The same correlations transmit to
the localization length. A weakly localized particle is, on
average, surrounded by other weakly localized particles,
a strongly localized one by other strongly localized par-
ticles. This kind of local inhomogeneities is also observed
numerically for structural glasses, see [26]. Even though
this picture is based on the simplest truncation of the
Mayer-cluster expansion, we expect it to hold in the full
theory (see the discussion in the next section).

5.2 First correction to mean-field

How does the inclusion of higher-order diagrams change
the picture drawn above? We will give a partial answer by
including also the triangular diagram Γ∆ into the trun-
cated Mayer series. The single-molecule density is then
given by

ρ(r̂) = exp {−µ+ Γ− + Γ∆} . (43)
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The exponent on the rhs of equation (37) has thus to be
completed by the term

Γ∆ �→ ρ2
0W∆

2

∫ ∞

0

dτ1 dτ2P̃ (τ1) P̃ (τ2)

×
∑

α1,2,3∈{0,κ}
(−1)1+

α1
κ +

α2
κ +

α3
κ

× exp

{
− ix

τ1τ2(α1 + α2)
(τ1 + α1 + α3)(τ2 + α2 + α3) − α2

3

+
(τ1 + τ2)(α1α2 + α1α3 + α2α3)

(τ1 + α1 + α3)(τ2 + α2 + α3) − α2
3

}
(44)

where we use the abbreviation P̃ (τ) = (1−q)δ(τ)+qP (τ)
for the localization-length distribution of all N particles,
including the delocalized ones with τ = 0. The constant
W∆ is given in equation (16). Even if the derivation is
slightly more involved, it follows the ideas presented in
Appendix B for Γ−.

In the limit x→ −i∞, we obtain a closed equation for
the gel fraction q,

1 − q = exp{−cq + ρ2
0W∆q(1 − q)} . (45)

Specializing to the Gaussian shape of p(r 0) given in (9),
we find ρ2

0W∆ = 3−d/2c2. A nonzero gel fraction appears
continuously at the critical value ccrit of the average
connectivity given by

γ :=
2

3
d
2
ccrit = 1 −

√
1 − 4 · 3−d

2 . (46)

For d = 3 we find ccrit = 1.3515 , and for increasing spa-
tial dimension the critical connectivity decreases exponen-
tially to one. So, in contrast to the simplest truncation, we
find a dimension-dependent gelation point. The increas-
ing number of needed crosslinks is due to the fact that
the finite-dimensional disorder produces more compact
structures (triangles, tetrahedra, etc.), and more links are
needed to build up a macroscopic cluster of connected par-
ticles, see also Figure 4.

Increasing the connectivity c by a small amount ε
above the percolation threshold, c = cc+ε, we can expand
equation (45) in both ε and q. Neglecting contributions
of O(εkql) with k + l ≥ 3, we find

q = 2
1 − γ

1 − γccrit
ε+ O(ε2) . (47)

The gel fraction q starts to grow linearly with the dis-
tance from the transition; the critical exponent for the gel
fraction is thus given by its mean-field value. Only the
prefactor is changed, in 3 dimensions it equals 3.231. The
prefactor approaches its mean-field value exponentially, as
the spatial dimension is increased.

We expect the same critical exponent to be valid
for any finite truncation of the Mayer-cluster expansion,
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Fig. 4. Gel fraction as a function of the average connectivity
c = ρ0W− for d = 3 and both truncations of the Mayer-cluster
expansion. When the triangular diagram is included, the exis-
tence of a non-zero gel fraction sets in later.

because the equation determining the gel fraction has
the form

1 − q = exp

{
imax∑
i=1

aiq
i

}
(48)

where imax is the maximal number of black vertices in the
considered diagrams. The gelation transition happens at
a1 = 1, implying a linear growth of the gel fraction. A dif-
ferent exponent can only result either from a resummation
of an infinite series or if accidentally a2 = 1/2 at the crit-
ical point, a situation which obviously would correspond
to a very specific choice of the model parameters.

For general crosslink concentration c and the trunca-
tion including only the linear and triangular diagrams, the
equation for the distribution of localization lengths follows
from equations (43, 44). It can be written as a series ex-
pansion, similar to the mean-field result of equation (39).
However, not all coefficients of the expansion are positive.
Hence, these coefficients cannot be interpreted as proba-
bilities any more, and the population dynamics cannot be
applied.

We can still compute the distribution of localization
lengths in the critical regime. The scaling function has to
be modified according to

π(θ) =
1 − γ

1 − 2
3γccrit

εκ P

(
1 − γ

1 − 2
3γccrit

εκθ

)
. (49)

Proceeding analogously to Appendix B, we reproduce
equation (40) and hence find that the critical behavior
of the distribution of inverse squared localization lengths
remains unchanged by the triangular diagram.

Also the limiting case of high crosslink densities c
 1
is tractable. In particular, ansatz (42) still solves the in-
tegral equation up to corrections of O(c0). To this end,
we plug this ansatz into Γ∆ as given in (44), and use that
τ1,2 = O(c) with a probability that approaches one for in-
creasing c. Hence the argument of the exponential in (44)
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is given by −i(α1 + α2)x + O(1/c) and does not depend
on α3 to leading order in 1/c. The summation over α3

thus leads to a cancellation of the leading order, such that
Γ∆ = O(1/c), i.e. the triangular diagram does not con-
tribute to the leading order in 1/c but only to the correc-
tions of solution (42). We expect the same to hold also for
higher-order diagrams.

More generally, we expect mean-field theory to give
qualitatively correct results in the gel phase away from
the critical point. The quantitative agreement becomes in-
creasingly better for growing connectivity, as can be seen
for the gel fraction (see Fig. 4) as well as for the distribu-
tion of localization length.

6 The Deam-Edwards distribution

Previous work on the statistical mechanics of gelation
does not use the cluster statistics of percolation theory,
but instead follows the elegant strategy of Deam and
Edwards [6], who have given an implicit formula for the
distribution of crosslinks, which is believed to be equiva-
lent to finite dimensional percolation. It is the aim of this
section to clarify the relation between the two approaches
and put the Deam-Edwards distribution in a more general
context.

We start from equation (5), but allow for fluctuations
in the total number of crosslinks, assuming a Poisson dis-
tribution. A particular crosslink configuration is then con-
structed in three steps:

(1) Choose a configuration R0 randomly, according to
the distribution

ϕ(R0) =
e−ψ(R0)∫

ddNR e−ψ(R)
· (50)

A natural choice would be ψ(R0) = U(R0) in order to
model instantaneous crosslinking of a fluid with correla-
tions induced by the pair interactions U(R0). As we shall
see, the Deam-Edwards distribution does not correspond
to this choice.

(2) Given the configuration R0, choose the total num-
ber of crosslinks M according to a Poisson distribution

W (M |R0) =
h(R0)M

M !
e−h(R0) , (51)

where h(R0) is an arbitrary positive function.
(3) Given the configuration R0 and the total num-

ber of crosslinks M , choose a crosslink configuration
C = {(ie, je)}Me=1 with probability

P (C|R0,M) =
M∏
e=1

p(ie, je|R0,M) . (52)

An observable f(R0, C), which depends not only on
the crosslink configuration C but possibly also on R0 is

then averaged according to

f(R0, C) =
∞∑
M=1

M∏
e=1

N∑
ie,je=1

∫
ddNR0ϕ(R0)

(h(R0))M

M !

× e−h(R0)P (C|R0,M)f(R0, C) . (53)

Modeling continuum percolation, we take ϕ(R0) = 1/V
and h(R0) = cN/2 independent of R0, so that the mean
number of crosslinks M = cN/2 is macroscopic and fluc-
tuations around the average are small. The number of
crosslinks per particle fluctuates around its finite mean c.

In the approach of Deam and Edwards, one argues that
particles which have a high probability to be close in the
fluid phase also have a high probability to be crosslinked.
The corresponding distribution of crosslinks is defined im-
plicitly through the average of an observable [6,7], accord-
ing to

f(R0, C)
DE

=
∞∑

M=1

(µ)M

M !

×
M∏
e=1

N∑
ie,je=1

∫
ddNR0e−U(R0)

∏M
e=1∆(|R0

ie − R0
je |)f(R0, C)∫

ddNR0e−U(R0)+µ
�N

i,j=1 ∆(|R0
i−R0

j |)
·

(54)

Here U(R0) denotes the pair potential, acting among the
particles of the fluid, and ∆(x) is a short-ranged, posi-
tive function. The Deam-Edwards distribution is a special
case of the above more generally defined distribution of
crosslinks (50–52), implying a special choice for ϕ(R) and
h(R) denoted by ϕDE(R) and hDE(R). To uniquely iden-
tify these functions we choose f(R0, C) = δ(R0−R)δ(M−
K) and compute its average according to equation (54)

δ(R0 −R)δ(M −K)
DE

=

[
µ
∑N
i,j=1 ∆(|Ri − Rj|)

]K
K!

× e−U(R)∫
ddNR0 e−U(R0)+µ

�
N
i,j=1∆(|R0

i−R0
j |)

· (55)

Computing the same average with the general class of dis-
tributions according to equation (53)

δ(R0 −R)δ(M −K) =
e−ψ(R)∫

ddNR0 e−ψ(R0)

h(R)K

K!
e−h(R)

(56)

allows us to identify

ψDE(R) = U(R) − µ

N∑
i,j=1

∆(|Ri − Rj |) and

hDE(R) = µ

N∑
i,j=1

∆(|Ri − Rj|). (57)
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We note that, first, the chemical potential of
the crosslinks, which determines the total number of
crosslinks, depends on the disorder configuration. A short
ranged ∆(|R|) will give rise to an intensive concentration,
because

∑N
i,j=1∆(|Ri − Rj |) should be of order O(N).

Fluctuations are expected to be of order O(
√
N), so that

one might hope that in the macroscopic limit it does not
matter, whether h(R) in the Poissonian distribution is
taken to be constant or chosen to be R-dependent as by
Deam and Edwards.

Second, the potential ψDE(R), which determines the
crosslink configuration, is not the potential of the under-
lying fluid as it should be for chemical gelation. In par-
ticular the correlations of the fluid should not depend on
the function ∆(R) which determines the probability of a
crosslink to be formed. The choice of Deam and Edwards
has, however, technical advantages, because it simplifies
replica calculations: The replica theory resulting from the
above average (54) with f(C) = − lnZ(C) is the only one
which is symmetric with respect to permutations of all
n + 1 replicas. In view of the above identifications, this
seems to be an artifact of the Deam-Edwards distribution
and the generic theory of gelation will not have this addi-
tional symmetry, but will only be symmetric with respect
to permutations of the n thermal replicas, as discussed in
Section 4.4.

7 Conclusion

We have studied the gelation transition as well as the
highly connected gel phase for crosslink distributions of
d-dimensional percolation. The average over the random
connectivity can be achieved with help of the replica trick.
The resulting n-fold replicated, effectively uniform theory
is interpreted as a molecular fluid, such that each parti-
cle of the unaveraged system corresponds to an effective
molecule with (n + 1) constituents. The uniform theory
is symmetric with respect to permutations of n replicas,
which are introduced to represent lnZ and are called ther-
mal replicas. One additional replica is used to generate
short-range connectivity correlations and, in general, can-
not be permuted with any of the thermal replicas.

The molecule density entails all information about the
order parameter of the gel phase. “Bound” molecules indi-
cate localization of the particles, in the sense that copies
(or thermal replicas) of the original system are close to
each other in real space. More precisely, the order param-
eter of the gel phase is the distribution of local static den-
sity fluctuations. This distribution is non-Gaussian due
to the finite connectivity per particle. Hence moments of
arbitrary order l are necessary to specify the state of the
gel. Integrating the molecule density over all but l of the n
thermal replicas, yields the lth moment of the local static
density fluctuations.

The effective molecular fluid allows for an analysis
in the framework of liquid-state theory. In particular
a Mayer-cluster expansion can be set up for the local
molecule density. The lowest-order term in the expansion

yields back the results of mean-field theory. Assuming a
replica-symmetric solution, we can compute corrections
to mean-field theory. Here we do not concentrate on non-
classical, critical behavior, which is difficult to obtain in
such an expansion. Instead we focus on the properties of
the gel phase away from the critical point. Within mean-
field theory the structure of the gel is completely charac-
terized by the distribution of localization lengths P (ξ2),
which has been computed previously [12] in the critical
region. Here we compute P (ξ2) for all connectivities and
point out a one-to-one correspondence between the con-
nectivity of a particle and its localization length. For high
connectivities the distribution of localization lengths is
shown to exhibit a multi-peak structure with the weight of
each peak given by the Poisson statistics of connectivities.

Corrections to mean-field theory increase the percola-
tion threshold, but do not change the qualitative picture
of mean-field theory. In the limit of increasing connectiv-
ity the corrections to mean-field theory become less and
less significant.

The analysis may possibly be extended to study two-
point-correlation functions or even higher correlations.
Given the connectivity correlations of neighboring sites, as
discussed in Section 3.3, we expect to find similar correla-
tions for strongly, respectively weakly localized particles.
Another possible extension of our work concerns the elas-
tic properties of the gel. It would certainly be interesting
to compute the elastic constants within a Mayer-cluster
expansion.

Besides the Mayer-cluster expansion, we have dis-
cussed a rather general class of crosslink distributions.
This general framework helps to put the Deam-Edwards
distribution in the context of percolation theory, and
allows to study a variety of connectivity distributions.
Whether or not the critical behavior is universal with re-
spect to the distribution of the disorder is unknown and so
far has hardly been addressed systematically in disordered
systems.

Furthermore, the Deam-Edwards distribution was
shown to be the only crosslink distribution giving rise to
an average free energy which is symmetric with respect to
permutations of n+1 replicas. The generic case – including
percolation statistics as well as crosslinks with correlations
of the melt – is symmetric with respect to permutations
of the n thermal replicas only. In view of these results,
it might be interesting to reconsider the issue of replica-
symmetry breaking, which was shown to be absent in gels
with the Deam-Edwards distribution [27].

We are grateful to Peter Müller for numerous comments on the
manuscript. The work of AZ has been supported by the DFG
through Grant No. Zi209/6-1 and SFB 1871.

Appendix A: Equation for P(τ)
for the simplest truncated series

In this appendix, we derive the self-consistent equation
for P (τ) from the simplest non-trivial truncation of the
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Mayer-cluster expansion for the lth moment

ρ(l)(r 1, ..., r l) =

lim
n→0

∫
V

ddr0
n∏

a=l+1

∫
V

ddra exp {−µ+ Γ−} . (A.1)

We compute Γ− with the ansatz of equation (33)

ρ(r̂) = (1 − q)
ρ0

V n
+ qρ0

∫
ddR

∫ ∞

0
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) d
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−
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τa
2

(r a − R)2 ,

}
(A.2)

where we have introduced τa := τ, for all a = 1, ..., n. The
ansatz is first simplified by integrating over R

ρ(r̂) = (1 − q)
ρ0

V n
+ qρ0

∫ ∞

0
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×
(
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(A.3)

and then it is plugged into the expression for Γ−

Γ− =
∫

dd(n+1)r̂1ρ(r̂1)p(r1
0 − r 0)

×
[
e−
�n

a=1 V (r1
a−r a) − 1

]
. (A.4)

We use harmonic interactions V (r) and a Gaussian-shaped
p(r) to find

Γ− = −ρ0W− + ρ0(1 − q)
∫

dd(n+1)r̂1
V n

× p(r1
0 − r 0) exp
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2
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. (A.5)

The integrals over r̂1 are Gaussian and hence can be per-
formed. We are interested in the leading term in the limit
n → 0, and hence replace Cn → 1 with C an arbitrary
constant. In this way we obtain

Γ−→−ρ0W−q + ρ0q

∫
ddR
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.

The R-integration can be carried out, yielding

See equation above.

We have introduced σa = σ for a = 1, ..., n and have
removed trivial n-dependencies which are irrelevant in the
replica limit n→ 0.
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In order to obtain an equation for P (τ), the above expres-
sion is plugged into equation (A.1). For the sake of clarity,
we only consider l = 2

ρ(2)(r 1, r 2) = lim
n→0

∫
V

ddr0
n∏
a=3

∫
V

ddra exp {−µ+ Γ−} .

(A.6)

and note that all higher moments lead to the same equa-
tion for P (τ). The integrations over r 0 and r a, a =
3, ..., n, can be carried out by expanding the exponential
on the rhs of equation (A.6). The result

ρ(2)(r 1, r 2) = e−µ−cq
∞∑
l=0

(cq)l

l!
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0

dτ1 · · ·dτlP (τ1)· · ·P (τl)

×
∫ ∞

0

dσδ
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κτi
κ+ τi

)

×
( σ

4π

) d
2

exp
{
−σ

4
(r 1 − r 2)2

}
depends only on the reduced distribution P (τ) =∫

dτ0 P (τ0, τ) of inverse squared localization lengths of
the crosslinked system. For the left hand side of the last
equation we use expression (34) and compare coefficients
of Gaussians of the same variance. In the last step, we
adjust µ to fix the normalization and find

(1 − q)δ(τ) + qP (τ) =

e−cq
∞∑
l=0

(cq)l

l!

∫ ∞

0

dτ1 · · · dτlP (τ1) · · ·P (τl)δ

×
(
τ −

l∑
i=1

κτi
κ+ τi

)
· (A.7)

Taking the Fourier transform with respect to τ , allows us
to evaluate the sum on the rhs of equation (A.7) and leads
to equation (37).

Appendix B: Scaling function for the truncated
series

In order to derive the scaling function for the distribution
of localization lengths in the critical region, we start from

the full equation (39) for the simplest truncated Mayer
expansion, or equivalently for the mean-field theory:

P (τ) = e−cq
∞∑
l=1

clql−1

l!

×
∫ ∞

0

dτ1 · · ·dτl P (τ1) · · ·P (τl) δ

(
τ −

l∑
i=1

κτi
κ+ τi

)
.

(B.1)

The critical connectivity is given by c = 1. If we further
increase the number of crosslinks, c = 1 + ε (0 < ε 

1), a macroscopic gel component appears. Its fraction is
given by

q = 2ε+O(ε2) . (B.2)

Moreover, the inverse squared localization lengths, i.e.
the τ ’s, are expected to grow linearly with the distance
from the critical point. We thus rescale P (τ) by setting
τ = εκθ, and define the distribution

π(θ) = εκP (εκθ) . (B.3)

Plugging this into equation (B.1), we find

See equation above.

The first non-trivial order thus gives the expected integro-
differential equation (40) for the scaling function π(θ).
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